$W_{\text {up pr }}$ Math 1-3 Activities Menu K
Curriculum

Instructions: Choose from the options below. Enjoy as many or as few as you have time for.

A	B
$\frac{\text { Number Line }}{\text { Estimation }}$	$\frac{\text { As Close as It Gets: }}{\text { How Many Pattern }}$

Talking about Math

Code the Story

Rugby Math
To win a game of rugby you need to score the most points. Points can be scored as follows:

- Try = 5 points
- Try with conversion $=7$ points
- Penalty kick or drop goal $=3$ points

See Rugby Math problems on pages that follow.

Talking About Math
Activity Problem

Technology

Estimation Task

SolveMe
MysteryGrid

Piggy Bank Money

1-10 Game

All Task C activities relate to the story The Water Walker by Joanne Robertson.

Complete the tasks and activities that follow.

$$
\frac{\text { *Listen* to the }}{\text { story here. }}
$$

Money, Money, Money

Ru'bĭcon © 2020 Rubicon Publishing Inc.

Math Data Game for Kids

SolveMe Who Am I?
Flip a Coin Workout Part 2
Keep a tally of every heads and tails you flip, then:

- Graph it
- Predict next flip
- Make your own Flip a Coin workout

Super Mario
 Estimation

mini

The Water Walker

Listen

Listen and follow along as the author and illustrator, Joanne Robertson, reads her book The Water Walker.
"The story is about a determined Ojibwe Grandmother (Nokomis) and her great love for Nibi (water). Nokomis walks to raise awareness of our need to protect Nibi for future generations, and for all life on the planet. "

Estimation Task

Make sure you have listened to the story The Water Walker.
About how much water gets used in your household per day?

Give your answer to the nearest hundred litres?

Give your answer to the nearest fifty litres?
How did you come up with your estimates?

Talking About the Math

What do you notice and wonder about the graph?

If Cornwall had an average annual precipitation of just over 1000 mm , then what would you estimate the annual precipitation in Toronto to be? What about Thunder Bay?

Litres of water per person, per day

Average Annual Precipitation

The Water Walker continued

Activities adapted from Choice Boards Created by SCDSB

Activity: Water Scavenger Hunt

Item	Tally	Frequency
A storm drain		
A body of water		
Something blue or green		
Something wet or damp		
A hill		
An animal		
Something that is okay to throw in the water		
Something that is on land but belongs on water		
Something that floats		

The Water Walker continued

Activities adapted from Choice Boards Created by SCDSB

Problem:

Nakomis and the Mother Earth Water Walkers walked around all the great lakes and the St. Lawrence River.

They got up before the birds and went to bed when the moon rose. What time might they have gotten up? About what time did they go to bed? How long were they awake each day? How do you know?

If they walked every spring for seven years, how many months did they walk?

How many days did they walk?

Technology:

Water Experiments: Watch this video and try some of the water experiments at home.

Number Line Estimation

What numbers would be represented by the boxes on the number line?
How do you know?

What numbers would be represented by the boxes on the number line?
How do you know?

Place the following numbers on the number line. How did you know where to place them?
a) 300
b) 2000
c) 100
d) 900

As Close as It Gets: Geometry

Chris saw the image below. He challenged his friend and said, "I bet I can cover this image with fewer pattern blocks than you."

What is the fewest number of pattern blocks Chris used to cover the shape without any gaps or overlaps?		
a) 3	b) 4	
c) 5	d) 6	

Challenge: Can you recreate this shape with pattern blocks? What different combinations will cover it? Try this mathies tool to help!

Estimate the Number of Flowers to Create

1. How many complete flowers can you create from the pile of pattern blocks?

	Too Low	Just Right	Too High
Estimate			
Reasoning			

2. How does the image of one complete flower help you to estimate?
3. If there are 105 wooden diamonds altogether, calculate the total number of flowers that can be created.
http://ntimages.weebly.com/suites--strings.html

Super Mario Estimation

http://brianaspinall.com/wp-content/uploads/2015/02/Size chart.jpg

Graphics have changed over the years, but Mario's size has stayed the same. Mario is estimated to be 155 cm tall.

Based on this information, estimate the heights of the other characters in the Super Mario universe. How did you come up with your answers?

Talking About the Math - Part 1

Task A: Smudged Math

Link to original question.

The paper is smudged. What could the solution be? What different possibilities are there?

1

Task B: Notice and Wonder

https://mathbeforebed.com/2018/03/08/mystery-bank/
There are *two mystery coins* in the piggy bank.
What could the coins be to make the total

Talking About the Math - Part 2

Task D: Which One Doesn't Belong?

https://twitter.com/rubiconpubs/status/1262786400312844294?s=20
I, 2, 3, 4, I, 2, 3, 4, ...
Which pattern do you think doesn't belong?
Why do you think that?
A friend picked a different pattern.
Which pattern might they have picked?
What would their reasoning be?

I, 2, 3, 4, 5, 6, 7, 8, 9 , 10, ...

2, 4, 6, 8, 0, 2, 4, 6, 8, 0 ,
2, 4, 6, 8, 0, ...
$5,0,5,0,5,0, \ldots$

Sample solution provided by Marian Small and Rubicon Publishing:

$$
\begin{aligned}
& \text { SAMPLE RESPONSE } \\
& \text { E.g., I think the second one doesn't belong. It doesn't look like it } \\
& \text { repeats. } \\
& \text { OR } \\
& \text { I think the last one doesn't belong because there is no } 4 \text { in it. } \\
& \text { OR } \\
& \text { I think the last one doesn't belong because it repeats really fast. } \\
& \text { Remind students of the letter name structures they learned } \\
& \text { about for geometric patterns. Encourage them to consider how } \\
& \text { they might name any of the repeating number patterns shown } \\
& \text { using that convention. [The patterns above could be called } \\
& \text { (1) ABCD, (2) does not repeat OR ABCDEFGHIJ, (3) ABCDE, and } \\
& \text { (4) AB.] }
\end{aligned}
$$

Task E: Two Truths and a Lie

 www.mashupmath.comWhich of the statements below is a lie?

How do you know?

1) The perimeter of Figure B is greater than the area of Figure A.
2) The area of Figure A is greater than the perimeter of Figure B.
3) Figure A and Figure B have the same perimeter.

Code the Story

Read / Listen to the story

A Lot of Noise by Lalie Harcourt and Ricki Wortzman

 Click on the image for a link to the book.
Instructions:

You are going to code the story A Lot of Noise using the board on the next page.

1. Complete the coordinate chart. This will tell you where to place the different items The Guy picked up. Roll two dice (or one die twice). These numbers will provide the coordinates for placing the item (you can draw or write these in). The first number indicates which column and the second number indicates which row.

Item	$(\sqrt{(2)}$		$\cdots-\infty$		
Coordinates	(,)	$($,	(,)	$($,	$($,

2. Once you have all the images on the grid, give directions to re-tell the story. Start at the red wagon and end at the shed. Be sure to reach every item, in order.
3. Can you tell someone how to make their way through the board to collect all the items?

Extension: Try this again with your favourite story.

Example of what your board might look like:

1 to 10 Game (addition)

2-player

You need: - 2 dice - 1 deck of cards (discard face cards; Ace =1)	Set-up: - Player 1 takes the red cards - Player 2 takes the black cards - Take turns

Player 1:

- Roll the dice and determine the sum.
- Remove enough cards from your hand to add up to this sum. Switch Players.
- If you can't make a sum with the cards in your hand, roll again.
- If you can't make a sum after three rolls, you lose the game.

Example:
If you roll a 5 and a 3, you can make 8 in a variety of ways (5 + 3, 4 + 4, 4 + 2 + 2, $3+$ $2+3$, etc.).

The Winner:
You win if your partner can't make a number in three rolls or if you remove all your cards.

Flip a Coin Workout - Parts 1 \& 2

Flip a Coin Workout - Parts 1 \& 2

\longrightarrow Create a title for this graph

Flip a Coin Workout - Parts 1 \& 2

Create your own

Turnover (addition \& subtraction) 2-4 players

You need:

- 2 dice
- 11 cards per player, numbered 0-10
- cards may be hand-written
- if using a card deck, let Ace $=1$ and a face card $=0$

Set-up:

- Each player places cards face-up in a row

Method:

- Player 1 rolls both dice and may choose to add or subtract the two numbers shown on the dice.
- If the resulting sum or difference equals one of the number cards still face-up, the player can turn that card face-down.
- Switch players.

The Winner:

Play continues until one of the players wins by turning all 11 cards face-down.

Rugby Math

Taken from:
https://www.atm.org.uk/write/MediaUploads/News/MWE Rugby Scores FINAL.pdf
The men's Rugby World Cup 2019 was held in October in Japan. To win a game of rugby you need to score the most points. Points can be scored in these different ways:

Try $=5$ points
Try with conversion $=7$ points
Penalty kick or drop goal $=3$ points

England beat Tonga 35 to 3 . Tonga scored three points though a penalty kick or drop goal. How did England score 35 points? Hint: it wasn't by scoring 7 tries.

Show your thinking here:

To watch: 3 Minutes of [Best] Rugby Ever Highlanders vs Chiefs

Rugby Math continued

Taken from:
https://www.atm.org.uk/write/MediaUploads/News/MWE Rugby Scores FINAL.pdf

> Try $=5$ points
> Try with conversion $=7$ points
> Penalty kick or drop goal $=3$ points

The final scores for the other England games are below. Can you work out how all the teams scored their points? Is there more than one way to score some of these points?

England 45	USA 7
England 39	Argentina 10
England 40	Australia 16
England 19	New Zealand 7
England 12	South Africa 32

See following page for score chart.

Rugby Math continued

Taken from:

https://www.atm.org.uk/write/MediaUploads/News/MWE Rugby Scores FINAL.pdf

	Total Score	Try (5)	Try with Conversion (7)	Penalty Kick/Drop Goal (3)
England	45			
USA	7			
England	39			
Argentina	10			
England	40			
Australia	16			
England	19			
New Zealand	72			
England				
South Africa				

How Many Biscuits Can You Make?

http://robertkaplinsky.com/work/how-many-biscuits-can-you-make/

You are hosting a barbeque and you want to make as many biscuits as possible with the ingredients you already have.

How many biscuits can you make?

What problem are you trying to figure out?	What guesses do you have?
	What information do you need to know to solve the problem?
What do you already know?	

More Information:

Money, Money, Money

Rubicon © 2020 Rubicon Publishing Inc.

Sample response from Marian Small and Rubicon Publishing:	SAMPIE RESPONSE
	What might it have cost? What bills did she pay with What was her change in coins?
	E.g., If it cost $\$ 18.45$, she would pay for it with two $\$ 10$ bills and get back one loonie, two quarters, and one nickel. ORIf it cost $\$ 113.95$, she might pay for it with a $\$ 100$ bir and a $\$ 20$ bill and get back three toonies and a nickel.
	Take the opportunity to remind students that penvies are down when the cost or the change is not an amount of money that can be shown with inickls. For example, change that is $\$ 14.23$ is given as $\$ \$ 14.20$.
	Ru'bicon © 2020 Rubicon Publishing Inc.

Verify your solutions using the Mathies Money Tool.

	Grade 1	Grade 2	Grade 3
莒	Problem Solving - Reasoning and Proving	$\begin{array}{ll} \text { IVeflecting } \\ \text { I } & \text { Selecting Tools and Computational Strategies } \\ \text { Connecting } \end{array}$	[Representing] Communicating
	read, represent, compare, and order whole numbers to 50, and use concrete materials to investigate fractions and money amounts demonstrate an understanding of magnitude by counting forward to 100 and backwards from 20; solve problems involving the addition and subtaction of single-digit whole numbers, using a variety of strategies.	\square read, represent, compare, and order whole numbers to 100, and use concrete materials to represent fractions and money amounts to 100 c demonstrate an understanding of dagnitude by counting forward to 200 and backwards from 50 , using multiples af various numbers as starting points \square solve problems involving the addition and subtraction of one- and two-digit whole numbers, using a variety of strategies, and investigate multiplication and division.] read, represent, compare, and order whole numbers to 1000 , and use concrete materials to represent fractions and money amounts to \$10 - demonstrate an understanding of magnitude by counting forward and backwards by various numbers and from various starting points - solve problems involving the addition and subtraction of single- and multi-digit whole numbers, using a variety of strategies, and demonstrate an understanding of multiplication and division.
	identify, describe, extend, and create r repeating patterns demonstrate an understanding of the concept of equality, using concrete materials and addition and subtraction to 10	identify, describe, extend, and create repeating patterns, growing patterns, and shrinking patterns demonstrate an understanding of the concept of equality between pairs of expressions, suing concrete materials, symbols, and addition and subtraction to 18	व describe, extend, and create a variety of numeric patterns and geometric patterns demonstrate an understanding of equality between pairs of expressions, using addition and subtraction of one- and two-digit numbers
	\square estimate, measure, and describe length, area, mass, , capacity, time, and temerature, using non-standard units of the same size compare, describe, and order objects, using attributes measured in non- standard units	\square estimate, measure, and record length, perimeter, area, mass, capacaity, time, and temperature, using non-standard units and standard units compare, describe, and order objects,	\square estimate, measure, and record length, perimeter, area, mass, capacity, time, and temperature, using standard units; - compare, describe, and order objects, using attributes measured in standard units
	$\left.\begin{array}{\|ll}\square & \text { identify common two-dimensional } \\ \text { shapes and three-dimensional figures } \\ \text { and sort and classify them by their }\end{array}\right\}$	Identify two-dimensional shapes and three-dimensional figures and sort and classify them by their geometric properties compose and decompose two- dimensional shapes and three- dimensional figures describe and represent the relative locations of objects, and represent objects on a map	\square compare two-dimensional shapes and three-dimensional figures and sort them by their geometric properties describe relationshisp between two- dimensional shapes, and between two-dimensional shapes and three- dimensional figures identify and describe the locations and movements of shapes and objects.
	$\left.\begin{array}{\|ll}\text { collect and organize categorical } \\ \text { primary data and display the data } \\ \text { using concrete graphs and }\end{array}\right\}$pictographs without regard to the order of labels on the horizontal axis read and describe primary data presented in concrete graphs and pictographs describe the likelihood that everyday events will happen		\square collect and organize categorical or discrete primary data and display the data using charts and graphs, including vertical and horizontal bar graphs, with labels ordered appropritely along horizontal axes, as needed read, describe, and interpret primary data presented in charts and graphs, including vertical and horizontal bar \quadgraphs predict and investigate the frequency of a specific outcome in a simple probability experiment

