Instructions: Each day, choose from the options below. Choose as many or as few as you have time for.

	A	B	C	D	E
	Estimate the total number of tiles needed for the first 9 figures. Investigate!	How many recycled milk jugs were used to make this blue trash receptacle?	About How Long? Jen worked outside in the garden. What is closest to the time she spent working?	How Many Boxes of Popcorn?	Money Splat
	Which One Doesn't Belong?	Money Splat \$2.25	Find out the highest possible no by moving only 2 match sticks \square	Which One Doesn't Belong?	Visualizing Multiplication
	21 Flags Can you take the last flag?	Fraction Exploration	Chip, Chip, Chooray! Help Biscuit Elementary School solve their baking dilemma and then try out the recipe!	Sort the Digits Sort the digits so the product of the top row equals the sum of the bottom row. \square	Hundredths Double Hat Trick
$\begin{aligned} & \text { 乞 } \\ & \frac{\text { U }}{2} \\ & \text { O } \\ & \text { O} \end{aligned}$	Cubic Competition	Q. Choose a date and time as a start time. What date and time will it be 1000 days +1000 hours +1000 minutes from that start time? Ru'bicicon © 2020 Rubicon Publishing Inc.		When 86 is divided by a number, the remainder is 2 . What could the possible divisors be?	Exploring A Line Graph
	Ordering Fractions, Decimals and Percents		Toads and Vines	Match the Net to Its Solid	Exploring Algebra noode

Visual Patterns:
 Estimation Activity

What do you notice about the figures?
How would you describe the pattern to someone else at home?
How many tiles would you estimate there to be in the $9^{\text {th }}$ figure?
Investigate and record your thinking.
How might a table help organize your thoughts?
Estimate the total number of tiles within the first 9 figures. What estimate would be too high? Too low? Investigate.

For more patterning exploration, click the link below.

http://www.visualpatterns.org/

About How Long?

Jenn went outside to help her dad work in the garden. On her way out the door, she checked the time on the front hall clock. When she came in through the back door, she checked the time on the microwave.

Which of the following is closest to the time Jenn spent working outside? How do you know?
a) 3 hours
b) 2.5 hours
c) 2 hours 15 minutes
d) 1 hour 30 minutes

How Many Boxes of Popcorn?

Chad was selling boxes of popcorn. Each week he plotted how much he sold on the graph below.

Which of the statements below best describes how much popcorn was sold in week 3? Justify your answer.
a) Double the sales of week 2
b) $\frac{3}{4}$ of the sales of week 1
c) Equal to the sales of weeks 2 and 4 combined
d) A little more than double what was sold in week 4

It's hard to keep popcorn in our house. Goes too fast.
Some foods are just special.
Sometimes it's a way of staying in touch with who you are.

Just Like Home

Money Splat

adapted from: www.stevewyborney.com

If there is $\$ 112.91$ total.
Estimate how much money is under the Splat!

Too Low	Just Right	Too High
Reasoning:	Reasoning:	Reasoning:

Verify how much money is hiding under the splat? How do you know?

A friend figured it out a different way, how might they have solved the problem?

What different combinations of money could you have?
What combination of money would be the fewest bills and coins?

Which One Doesn't Belong?

Step 1: Examine the four addition problems.
Step 2: Identify the one you believe doesn't belong. Explain your reasoning.
Step 3: Imagine another student has chosen a different addition problem as the one that doesn't belong. What might be their reasoning?

Challenge: Provide an argument for each of the four addition problems not belonging with the others.

https://wodb.ca/numbers.html

Money Splat

If there is $\$ 2.25$ total, how much money is hiding under the splat? How do you know?

A friend figured it out a different way. How might they have solved the problem?

What different combinations of money could you have?

Which One Doesn't Belong?

Step 1: Examine the four upper case letters.
Step 2: Identify the one you believe doesn't belong. Explain your reasoning.
Step 3: Imagine another student has chosen a different letter as the one that doesn't belong. What might be their reasoning?

Challenge: Provide an argument for each of the four letters not belonging with the others. What mathematical language did you include in your explanations?

https://wodb.ca/shapes.html

Visualizing Multiplication

From bit.ly/mathwalks2020
Here are some ways we can visually show 18×5

What are the different ways you could visualize 8×26 ?

21 Flags

Instructions:

- 2 players take turns
- On their turn, each player can "take" 1, 2 or 3 flags
- Goal: Take the last flag

You may wish to use 21 Lego pieces, buttons, chocolate chips, or other small tokens to represent the flags.

Think about it:
What's your strategy?
What would you do differently next time?
Can you find a way to always win?

Fraction Exploration

Make drawings or

 take pictures of different ways to make 2/3.
Things to Consider:

Engaging in this problem at home allows students to look for representations of fractions in their environment. For instance, a student could make a set with 2 red cups and 1 blue cup, or two brothers and one sister. Finding $2 / 3$ of the distance across a room is another way they could illustrate $2 / 3$. Encourage students to explain to someone how they know their drawings/pictures all show $2 / 3$. Use questions like the following to encourage reflections and generalizations about $2 / 3$. What do you notice about each of your drawings/pictures? How are they alike and how are they different?

https://mathsolutions.com/at-home-learning-grades-3-4/

Problem of the Week Problem B and Solution
 Chip, Chip, Chooray!

Problem

At Biscuit Hill Elementary School, Chip and his sister, Charlene, have decided that they want to make cookies for all of the junior students in their school.
The recipe that they found makes enough chocolate chip cookies of 7 cm diameter for 16 people.

Recipe	
1 cup	butter
1 cup	brown sugar
$\frac{1}{2}$ cup	white sugar
2	eggs
2 tsp	vanilla
$2 \frac{1}{4}$ cups	flour
1 tsp	baking soda
300 g	chocolate chips

Junior Classes
Mrs. Martin 25 students
Mrs. Laing 26 students
Ms. Richmond 23 students
Mrs. Kelter 24 students
Mr. Hallett 22 students

a) How many batches should Chip and Charlene make so that they make the exact number of cookies needed for all of the students in the junior classes?
b) They decide to make a whole number of batches so that they have some extra cookies to save for later and one cookie for each teacher. What quantity of each ingredient in the recipe will they need?

Click here for the solution!

[^0]
Sort the Digits

https://twitter.com/JRappaport27/status/1257761151678648328?s=20

Can you sort the digits $1-9$ into the top or bottom row, using each digit exactly once, so that the product of the digits in the top row equals the sum of the digits in the bottom row?

What was your strategy?

Did your initial strategy work? How did you change your strategy?

Hundredths Double Hat Trick

Adapted from a game created by James Russo and shared by lovemaths.me/games

Required Materials:

[Two ten-sided dice or a deck of playing cards with the face cards removed (Aces' are worth one and 10's are zero)
\square Paper and 2 different coloured pens/markers

Watch

the game

(1).

 in action hereThe Goal: Be the first player to have four numbers, on the number line, that are not interrupted by the other player. (The numbers do not need to be consecutive, just uninterrupted).

Instructions:

1. On your paper draw a number line from 0 to 1 .
2. First player rolls the dice (or draws 2 cards). They determine which is the tenths-digit and which is the hundredths. They say the number and place it on the number line, below the line.
3. Second player rolls the dice (or draws two cards). They determine their number and place it on the number line, above the line.

4. Play continues until one player has 4 numbers, on their side of the number line, that are not interrupted by the other player. Note: If you roll a number that is already picked, you cannot use it.

Good questions to ask while playing:

$\square \quad$ What number can you make?
\square Why did you decide to make \qquad instead of \qquad ?
\square How do you know where your number goes?
\square What are you hoping to roll? Why? (This is effective if your child rolls each die - or picks a card - one at a time).
$\square \quad$ What would you do differently next time you play?
\square What strategy were you using?
Change it up: Add a third die or card and play from 0 to 1 using thousandths. Add a third die, or card, and play from 0 to 1000 . Use two dice and play with tens and ones from 0 to 100. Have the player roll each die (or pick a card) one at a time. After the first is rolled they must decide if it represents the tens-digit or ones.

Problem of the Week

Problem B

Cubic Competition

Duha and Mamdouh play a game with different sized cubes. Duha gets a point for each square cm of surface area, and Mamdouh gets a point for each cubic cm of volume.
They start with a $1 \times 1 \times 1 \mathrm{~cm}$ cube for round one. Duha gets 6 points and Mamdouh gets 1 point, so Duha wins this round.
They continue playing the game by increasing the cube dimensions by 1 cm each round.
a) For which cube will Duha's points for that round be twice Mamdouh's?
b) For which cube will they have a tie for the number of points for that round?
c) For which cube will Mamdouh finally win a round?
d) Explain the reasons for your answers to b) and c) to a classmate.

Cube	Surface Area (Duha)	Volume (Mamdouh)	
1.	6	1	
2.			
3.			
4.			
6.			
7.			
Click here for solution!			

Weighty Box Puzzle

I have ten boxes, with a total weight of 75 kg :
$15 \mathrm{~kg}, 13 \mathrm{~kg}, 11 \mathrm{~kg}, 10 \mathrm{~kg}, 9 \mathrm{~kg}, 8 \mathrm{~kg}, 4 \mathrm{~kg}, 2 \mathrm{~kg}, 2 \mathrm{~kg}, 1 \mathrm{~kg}$

I want to pack the boxes into 3 crates, but each crate can carry a maximum of 25 kg .

How can I pack the boxes into the crates?
(There may, or may not, be more than one way!)

Solution: https://www.mathsisfun.com/puzzles/a-weighty-problem-solution.html

Your turn:

Imagine you are filling a crate that can carry a maximum of 25 kg . What items from your home would you choose to fill the crate. How close to 25 kilograms can you get?

Exploring a Line Graph

Examine the line graph below. What do you notice? What do you wonder? If you added a title, what would it be? Explain your thinking to a family member.

Exploring the line graph further:

a) What is the range in the data?
b) What is the average (mean) kilos in one week?
c) If you learned that the title of the graph is "Potatoes Consumed," describe a story that would explain the data presented in the graph from Monday through Sunday. Be creative and share your story with someone!

Grades 4-6: Curriculum Continuum

Note: highlighted expectations are addressed in this menu

- Problem Solving
- Reasoning and Proving
- Reflecting
\square read, represent, compare, and order whole numbers to 10000 , decimal numbers to tenths, and simple fractions, and represent money amounts to $\$ 100$
- demonstrate an understanding of magnitude by counting forward and backwards by 0.1 and by fractional amounts solve problems involving the addition, subtraction, multiplication, and division of single-and multi-digit whole numbers, and involving the addition and subtraction of decimal numbers to tenths and money amounts, using a variety of strategies
- demonstrate an understanding of proportional reasoning by investigating whole-number unit rates
- describe, extend, and create a variety of numeric and geometric patterns, make predictions related to the patterns, and investigate repeating patterns involving reflections;
- demonstrate an understanding of equality between pairs of expressions, using addition, subtraction, and multiplication
\square ptimate, measure, and record log, perimeter, area, mass, capacity, volume, elapsed time, using a variety of strategies
\square and measurable attributes, including the area and perimeter of rectangles.

I identify quadrilaterals and three-
dimensional figures and classify them by their geometric properties, and compare various angles to benchmarks;

- construct three-dimensional figures, using two-dimensional shapes;
- identify and describe the location of an object, using a grid map, and reflect twodimensional shapes
\square collect and organize discrete primary data and display the data using charts and graphs, including stem-and-leaf plots and double bar graphs
- read, describe, and interpret primary data and secondary data presented in charts and graphs, including stem-and-leaf plots and double bar graphs
\square predict the results of a simple probability experiment, then conduct the experiment and compare the prediction to the results

Selecting Tools and Computational Strategies

- Connecting
\square read, represent, compare, and order whole numbers to 100000 , decimal numbers to hundredths, proper and improper fractions, andmixed numbers
\square demonstrate an understanding of magnitude by counting forward and backwards by 0.01
\square solve problems involving the multiplication and division of multi-digit whole numbers, and involving the addition and subtraction of decimal numbers to hundredths, using a variety of strategies;
\square demonstrate an understanding of proportional reasoning by investigating whole-number rates.
- Representing
- Communicating
\square read, represent, compare, and order whole numbers to 1000000 , decimal numbers to thousandths, proper and improper fractions, and mixed numbers
- solve problems involving the multiplication and division of whole numbers, and the addition and subtraction of decimal numbers to thousandths, using a variety of strategies
- demonstrate an understanding of relationships involving percent, ratio, and unit rate
- determine, through investigation using a table of values, relationships in growing and shrinking patterns, and investigate repeating patterns involving translations;
- demonstrate, through investigation, an understanding of the use of variables in equations.
\square estimate, measure and represent time intervals to the nearest second estimate and determine elapsed time, with and without using a time line, given the durations of events expressed in minutes, hours, days, weeks, months, or years
\square measure and record temperatures to determine and represent temperature changes over time
\square estimate and measure the perimeter and area of regular and irregular polygons, using a variety of tools and strategies.
\square identify and classify two-dimensional shapes by side and angle properties, and compare and sort three-dimensional figures;
- identify and construct nets of prisms and pyramids;
- identify and describe the location of an object, using the cardinal directions, and translate twodimensional shapes
\square collect and organize discrete or continuous primary data and secondary data and display the data using charts and graphs, including broken-line graphs
\square read, describe, and interpret primary data and secondary data presented in charts and graphs, including broken-line graphs
- represent as a fraction the probability that a specific outcome will occur in a simple probability experiment, using systematic lists and area models.
describe and represent relationships in growing and shrinking patterns (where the terms are whole numbers), and investigate repeating patterns involving rotations;
- use variables in simple algebraic expressions and equations to describe relationships.
\square estimate, measure, and record quantities, using the metric measurement system;
- determine the relationships among units and measurable attributes, including the area of a parallelogram, the area of a triangle, and the volume of a triangular prism.
$\square \quad$ classify and construct polygons and angles;
- sketch three-dimensional figures, and construct three-dimensional figures from drawings;
- describe location in the first quadrant of a coordinate system, and rotate twodimensional shapes
$\square \quad$ collect and organize discrete or continuous primary data and secondary data and display the data using charts and graphs, including continuous line graphs;
- read, describe, and interpret data, and explain relationships between sets of data;
\square determine the theoretical probability of an outcome in a probability experiment and use it to predict the frequency of the outcome.

[^0]: https://www.cemc.uwaterloo.ca/resources/potw/2019-20/English/POTWB-19-NN-24-P.pdf

