Math 7-8 Activities- Menu G
M

Instructions: Each day, choose from the options below. Choose as many or as few as you have time for
B

C

Estimation 180

How long will it take to use all of the deodorant?

180

Math Magic Trick

Think of a number between 1 and 10 . Mdd 2 . Mubtract 2 . Subide by 2.
Divide
Subtract your original number. Subtract your is... your answer is...

Pythagorean Puzzle

What's Going on in this Graph? What effect does what we eat, and the food we waste, have on the environment?

All in a Jumble
My measurements have got all jumbled up! Click here to play.

Does This Sound about Right?

My round trip to work each day is about 22 km . I estimate that the total distance travelled for work each year is 8000 km . Does this seem right?

Try more questions like this here.
Decimal Addition
Use the digits, 0 through 9, without repeats, to complete the equation below:

OPEN MIDDLE
What is the value of each image?

Check your answers here.

Puzzling Prisms

Find the length, width, and height of a rectangular prism that has a surface area of more than $200 \mathrm{~cm}^{2}$ but less that $300 \mathrm{~cm}^{2}$.

Math Visuals

How would you solve 18×5 without a calculator?

Click here to watch a video with different strategies to solve this problem.

Which one was most similar to yours and why? Choose 1 strategy from the video and explain how it works.

Always?, Never?, Sometimes?

Would You Rather?

Have a 30 acre crop planted with seeds that carry a 58% survival rate OR have a 50 acre crop planted with seeds that carry a 42% survival rate?

Square Counting

Number The Sides
The triangles in this set are similar. What can you say about the length of the side with a question mark?

Try some more questions here.

Twin Puzzles

Go to student.desmos.com and type in the code:

Estimation 180

Use Data and Patterns to Predict

the use of Deodorant Sticks

How long will it take to use all of the deodorant?

Write down your first estimate. After each clue, you'll see if your estimate is still a possibility. After each clue, if your estimate is no longer possible write down a new estimate.

What information would be useful to know here and how would you get it?

Click here for
your first clue!

Estimation 180

Use Data and Patterns to Predict

the use of Deodorant Sticks

Clue 1:

B. 12-25-12
R.I.P. 4-10-13
B. 4-10-13

ESTIMATION
See if your estimate is still a possibility. If it is no longer possible write down a new estimate.

You may want to create a graph like the one below to help make your prediction. Remember to label the axes!

Click here for your next clue!

Source: http://www.estimation180.com/deodorant.htm|

Estimation 180

Use Data and Patterns to Predict
 the use of Deodorant Sticks

Clue 2:
B. 4-10-13
R.I.P. 7-18-13
B. 7-18-13

180

See if your estimate is still a possibility. If it is no longer possible write down a new estimate.

You may want to create a graph like the one below to help make your prediction. Remember to label the axes!

Click here for your next clue!

Source: http://www.estimation180.com/deodorant.htm|

Estimation 180

Use Data and Patterns to Predict
 the use of Deodorant Sticks

Clue 3:

B. 7-18-13
R.I.P. 10-25-13
B. 10-25-13

ESTIMATION

See if your estimate is still a possibility. If it is no longer possible write down a new estimate.

You may want to create a graph like the one below to help make your prediction. Remember to label the axes!

Click here for your next clue!

Source: http://www.estimation180.com/deodorant.html

Estimation 180

Use Data and Patterns to Predict
 the use of Deodorant Sticks

Clue 4:

B. 10-25-13
R.I.P. 2-2-14
B. 2-2-14

ESTIMATION

See if your estimate is still a possibility. If it is no longer possible write down a new estimate.

You may want to create a graph like the one below to help make your prediction. Remember to label the axes!

Click here for the reveal!

Source: http://www.estimation180.com/deodorant.html

Estimation 180

Use Data and Patterns to Predict

the use of Deodorant Sticks

The Reveal! How long will it take to use all of the deodorant?

Extension:

How many sticks of deodorant would one use in a lifetime?

Source: http://www.estimation180.com/deodorant.html

Does This Sound about Right?

Abstract

A scientist makes a set of estimates of various physical quantities. Can you work out how the scientist made her estimates by reproducing the calculations? Do the answers sound about right, or has the scientist made any significant mistakes?

1. My round trip to work each day is about 22 km . I estimate that the total distance travelled for work each year is 8000 km . Does this seem right?
2. A bottle of water contains 500 mL (or $500 \mathrm{~cm}^{3}$) of liquid. I fill a crate measuring 1 m by 50 cm by 50 cm with bottles of water to take on a field trip. I estimate that the crate contains 500 bottles of water. Does this seem right?
3. The number of rings a tree has on its trunk can tell you how old it is. On a tree stump I measure the distance between two adjacent rings and find that it is 0.6 cm . The diameter of the stump is almost half a meter. I estimate that the tree was 42 years old when it was cut down. Does this seem right?
4. Today I ate a 30 g packet of chips at morning break time, as I always do, so I estimate that I eat almost 11 kg of chips a year. Does this seem right?

Check you answers by clicking here.

Does This Sound about Right?

1. My round trip to work each day is about 22 km . I estimate that the total distance travelled for work each year is 8000 km . Does this seem right?

Possible Answer:

No. While $365 \times 22 \mathrm{~km}=8030 \mathrm{~km}$ is correct, it does not seem right to multiply the daily distance by 365 days as the scientist is not working every day of the year. On average a person will work 44 weeks each year and 5 days a week. So, 44 weeks $\times 5$ days $=220$ working days in a year. Therefore, the scientists is actually going to travel approximately $22 \mathrm{~km} \times 220$ days $=4840 \mathrm{~km}$ for work.
2. A bottle of water contains 500 mL (or $500 \mathrm{~cm}^{3}$) of liquid. I fill a crate measuring 1 m by 50 cm by 50 cm with bottles of water to take on a field trip. I estimate that the crate contains 500 bottles of water. Does this seem right?

Possible Answer:

Yes. $1 \mathrm{~m}=100 \mathrm{~cm}$. A crate with dimensions 100 cm by 50 cm by 50 cm will have a volume, $\mathrm{V}=250000 \mathrm{~cm}^{3}$. Therefore, the number of water bottles required to fill this crate up would be 500 (see calculation below).

$$
N=\frac{250,000}{500}=500
$$

3. The number of rings a tree has on its trunk can tell you how old it is. On a tree stump I measure the distance between two adjacent rings and find that it is 0.6 cm . The diameter of the stump is almost half a meter. I estimate that the tree was 42 years old when it was cut down. Does this seem right?

Possible Answer:

Yes. IF the diameter of the tree is almost half a meter (50 cm), its radius is almost 25 cm . If the tree's radius grows by 0.6 cm each year, in 42 years the radius should be: 42 years $\times 0.6 \mathrm{~cm}=$ 25.2 cm . Double the radius to estimate the diameter: 50.4 cm which is approximately half a meter.
4. Today I ate a 30 g packet of chips at morning break time, as I always do, so I estimate that I eat almost 11 kg of chips a year. Does this seem right?

Possible Answer:

No. $30 \mathrm{~g}=0.30 \mathrm{~kg}$. While $365 \times 0.3=10.95 \mathrm{~kg}$, which is close to the estimate, it might be more realistic to assume that the scientists only eats chips on working days. Therefore, as seen above, it might be more accurate to multiply $0.3 \mathrm{~kg} \times 220$ working days $=6.6 \mathrm{~kg}$ of chips each year.

Always?, Never?, Sometimes?

Always? Never? Sometimes?

(1) When you multiply 2 numbers, you get a bigger number. (2) The sum of 3 consecutive (in order) numbers is divisible by 3
(3) $a+b=a \times b$
(4) If rectangles have the same area, they have the same perimeter bitly/mathwalks 2020 \#mathwalk

Source: https://sites.google.com/powayusd.com/math-walks/home

Always True	Sometimes True	Never True

Click here for Solutions!

Always?, Never?, Sometimes?- Solutions

Always? Never? Sometimes?

(1) When you multply 2 numbers, you get abigger number. (2) The sum of 3 consecutive (in order) (4) imimers 5 divisite by 3
(3) $a+b=a \times b$
(4) If rectangles have the same area, they have the same perimeter bit ly/mathwalk 2020 \#mathwalk

$$
\begin{aligned}
(x)+(x+1)+(x+2) & =3 x+3 \\
& =3(x+1)
\end{aligned}
$$

Always True
Any number (x) + 1 will always be multiplied by 3 . If a number is multiplied by 3 it will always be divisible by 3 .
E.g. $3(201+1)=606 / 3=202$

Math Magic Trick!

Pick a whole number between 1
and 10.
Add 2.
Multiply by 2.
Subtract 2.
Divide by 2.
Subtract your original number.
What is your answer?

Try it again with a different number. What is your answer? How did it compare to your first answer?

Will this work for number that aren't whole numbers between 1 and 10? What numbers will it work for?

Click this link for more examples! https://safeYouTube.net/w/5HLB

Click here for a sample solution.

Math Magic Trick!

Source: https://mathforlove.com/lesson/math-magic-trick/

Why does this always work? Let's try it with pi (π) !

π (pick a number)
$\pi+2$ (add 2)
$2 \pi+4$ (multiply by 2)
$2 \pi+2$ (subtract 2)
$\pi+1$ (divide by 2)
1 (subtract your original number)

Did you know that we just solved this problem using algebra! We didn't need to know anything about the π symbol to find out that the answer was 1 . In fact, π could have stood for any number, and the answer would have been the same. Wait... if π could have stood for any number and the answer is still one, then the trick works for any number! This is actually an algebraic proof, and it gives an argument that the trick works. Always.

Click this link for further explanation:
https://safeYouTube.net/w/oIMB

Decimal Addition

Use the digits, 0 through 9, without

 repeats, to complete the equation below:

Source: https://www.openmiddle.com/decimal-addition/
OPEN MIDDLE

Here is one possible solution:

> | 2.4 | Can you find |
| ---: | :--- |
| +8.5 | $\begin{array}{l}\text { another } \\ \text { combination of } \\ \text { numbers that }\end{array}$ |
| 10.9 | $\begin{array}{l}\text { will work? }\end{array}$ |

Would You Rather?

Have a 30 acre crop planted with seeds that carry a 58% survival rate OR have a 50 acre crop planted with seeds that carry a 42% survival rate?

Explain your reasoning using mathematics.
https://www.wouldyourathermath.com/category/6to8/page/8/

Option A	Or	Option B
Conclusion: I would rather		
Because ...		

Click here for the solution!

Would You Rather? - Solutions

 Have a 30 acre crop planted with seeds that carry a 58% survival rate OR have a 50 acre crop planted with seeds that carry a 42% survival rate?

Explain your reasoning using mathematics.
https://www.wouldyourathermath.com/category/6to8/page/8/

Option A	Or	Option B
58% of 30 acre crop: $0.58 \times 30=17.4$ acres of growth.		42% of 50 acre crop: $0.42 \times 50=21$ acres of growth.
Conclusion: I would rather		
Because ...		

Farming is not easy. There are many factors that can determine the success of a harvest. At times it must seem like you are fighting the odds.

The Mohawk approached agriculture in a different way. Their key crops were "The Three Sisters" and they understood the importance of relationships, even for farming.

Watch the attached video and see if you can understand how this personification relates not only to harvesting of the "The Three Sisters" but to our relationship with each other?

The Three Sisters Legend

Pythagorean Puzzle

Print and Cut out the squares below. If you do not have access to a printer, follow the instructions here.

Explore which combinations of squares will NOT form a right-angled triangle.Use grid (graph) paper to make sure your angle is NOT 90°.

Explore which combinations of squares will successfully form a right-angled triangle. Use graph paper to make sure your right angle is exactly 90°. See a sample here.

1. Glue down the squares. Fill in the follow-up chart here.

TIPS4RM: Grade 8: Unit 10 - Visualizing Geometric Relationships

Sample:

Follow-Up Chart for Pythagorean Relationship Investigation

Fill in the blanks.

Triangle \#	Label of Square on Leg 1	Area of Square on Leg 1	Label of Square on Leg 2	Area of Square on Leg 2	Label of Square on Hypotenuse	Area of Square on Hypotenuse
1	4×4	16	3×3	9	5×5	25

To go back to the original question page click here.

Learn at Home Activity Menu G: Grades 7-8 Math

May 11, 2020 - May 15, 2020

Pythagorean Puzzle

Using grid paper draw and cut out the following 9 squares (see sample below):

3×3	4×4	13×13
5×5	8×8	12×12
17×17	5×5	15×15

Example:

If you do not have access to grid paper, you can use a ruler to accurately measure and draw each square (ie: draw a $3 \mathrm{~cm} \times 3 \mathrm{~cm}$ square).

Explore which combinations of squares will NOT form a right-angled triangle.
Use grid (graph) paper to make sure your angle is NOT 90°.

Explore which combinations of squares will successfully form a right-angled triangle. Use graph paper to make sure your right angle is exactly 90°. See a sample here. Glue down the squares. Fill in the follow-up chart here.

To go back to the original question page click here.

Follow-Up Chart

Fill in the blanks on the chart for the combinations of squares that will successfully form a right-angled triangle. See a sample here.

Triangle \#	Label of Square on Leg 1	Area of Square on Leg 1	Label of Square on Leg 2	Area of Square on Leg 2	Label of Square on Hypotenuse	Area of Square on Hypotenuse

Add the area of the square on Leg 1 to the area of the square on Leg 2.
What pattern to you notice? How does this sum relate to the area of the square on the hypotenuse?

Test a Triangle - Is It a Right-Angled Triangle?

Test each of the following triangles and determine if the triangle is a right-angled triangle: The first one is done for you.

Side 1	Side 2	Longest side	Areas		Is this a right-angled triangle?	How do you know?
3	4	5	$\begin{aligned} & 3^{2}+4^{2} \\ & =9+16 \\ & =25 \end{aligned}$	$\begin{aligned} & 5^{2} \\ & =25 \end{aligned}$	yes	$3^{2}+4^{2}=5^{2}$
4	6	7				
5	12	13				
8	15	17				
7	10	13				
8	12	15				
9	40	41				

Check your answers here.

TIPS4RM: Grade 8: Unit 10 - Visualizing Geometric Relationships

Learn at Home Activity Menu G: Grades 7-8 Math

May 11, 2020 - May 15, 2020

Solutions

Follow-Up Chart
Fill in the blanks on the chart.

Triangle \#	Label of Square on Leg 1	Area of Square on Leg 1	Label of Square on Leg 2	Area of Square on Leg 2	Label of Square on Hypotenuse	Area of Square on Hypotenuse
1	4×4	16	3×3	9	5×5	25

Add the area of the square on Leg 1 to the area of the square on Leg 2.
What pattern to you notice?
The sum of the two squares on Leg 1 and Leg 2 is equal to the area of they square on the hypotenuse. Or, $a^{\mathbf{2}}+\mathrm{b}^{\mathbf{2}}=\mathrm{c}^{\mathbf{2}}$

Test a Triangle - Is It a Right-Angled Triangle? (Teacher)

Test each of the following triangles and determine if the triangle is a right-angled triangle:

Side 1	Side 2	Longest side	Areas		Is this a right-angled triangle?	
$\mathbf{3}$	4	5	$3^{2}+4^{2}$ $=9+16$ $=25$	5^{2} $=25$	Yow do	
you know?						

TIPS4RM: Grade 8: Unit 10 - Visualizing Geometric Relationships

What is the value of each image?

Solution:

Therefore: 둥 $=7$

Therefore: $\frac{\mathrm{mm}}{\mathrm{m}}=6$

Learn at Home Activity Menu G Grades 7-8 Math

May 11, 2020 - May 15,

How many squares can you find in the different sized square grids if we only allow squares with horizontal/vertical sides?
(for the squares to count, all their corners should be on the points of the grid.)

What about on a 2 by 2 grid? A 3 by 3 grid? A 5 by 5 grid?

You may want to organize your answers in a chart:

Grid Size	Number of Squares
2 by 2	1
3 by 3	
4 by 4	

Or track the different sizes of grid squares on each grid (4 by 4 grid example):

1 by 1 squares: 9
2 by 2 squares: 4
3 by 3 squares: 1
Total: $1+4+9=14$

What patterns did you notice? What about a 10 by 10 grid? Is there a quick way to calculate this, or only a slow way?

Square Counting- Solutions

Source: https://mathforlove.com/lesson/square-counting/

4 by 4 grid

You may want to match the squares themselves to something simpler, such as a dot in their center or corner. If we mark each square with a dot in its upper left corner, for example, we'll see that there are nine 1 by 1 squares, since none can have their upper left corner on the bottom or right point of the grid.

Nine 1 by 1 squares.

There are four 2 by 2 squares and only one 3 by 3 square.

Therefore, the total number of squares on a 4 by 4 grid is: $9+4+1=14$

What pattern do you notice?

Grid Size	Number of Squares	First Difference
2 by 2	1	$4\left(2^{2}\right)$
3 by 3	5	$9\left(3^{2}\right)$
4 by 4	14	$16\left(4^{2}\right)$
5 by 5	30	$25\left(5^{2}\right)$
6 by 6	55	$36\left(6^{2}\right)$
7 by 7	91	$49\left(7^{2}\right)$
8 by 8	140	$64\left(8^{2}\right)$
9 by 9	204	$81\left(9^{2}\right)$
10 by 10	285	

We could also say that the number of total squares on any size grid is always a sum of square numbers, i.e., $1^{2}+2^{2}+3^{2}+\ldots+(m-1)^{2}$ where m is the number of dots on a side.

What's Going on in this Graph?

What effect does what we eat, and the food we waste, have on the environment?

What do you notice? If you make a claim, tell us what you noticed that supports your claim.

What do you wonder? What are you curious about that comes from what you notice in the graphs?

What's going on in these graphs? Write a catchy headline that captures the graphs' main idea.

To read the article where this graph came from, click here.

ETy New liork Eimes

Source: https://www.nctm.org/mathforum/ and https://www.nytimes.com/2019/12/05/learning/whats-going-on-in-this-graph-dec-11-2019.html

Puzzling Prisms

Find the length, width, and height of a rectangular prism that has a surface area of more than 200 square centimeters but less that 300 square centimeters.

Source: Adapted from https://mathsolutions.com/at-home-learning-grades-7-8/

Here is one possible solution:

The formula for calculating surface area of a rectangular prism is: $A=2(w h+l w+l h)$

$$
\begin{aligned}
& w=5 ; h=5 ; l=10 \\
& A=2(w h+l w+l h) \\
& A=2((5)(5)+(10)(5)+(10)(5)) \\
& A=2(25+50+50) \\
& A=2(125) \\
& A=250
\end{aligned}
$$

It might be useful to visualize the net when determining surface area.

Can you find another possible solution that will work?

Number the Sides

Watch this Intro to Similar Triangles video from Khan Academy.
'Similar' means that the triangles are exactly the same shape, but not the same size. The sides are in the same ratio to each other. Note that these triangles are not drawn to scale.

What can you say about the length of the side of the third triangle which is marked with a question mark?

This question can be solved by setting up a ratio table using the two shorter side lengths from each triangle:

The value of the question mark is 3×3 or 9 .

Try some similar questions here.

Number the Sides

Can you work out the lengths of the sides marked with a question mark in each of the following? Hint: it may help to redraw the triangles in the same orientation.

Question 1:

Question 2:

Check your solutions here.

Number the Sides Solutions

Question 1:
This is the same as the previous question with the triangles rotated. The unknown side length is 9 .

Question 2:

Rotate clockwise
 Counterclockwise

Math 7-8 Activities Menu G Curriculum Expectations

Estimation 180

Number Sense and Numeration

Grade 7

Specific: Use estimation when solving problems involving operations with whole numbers decimals, and percents, to help judge the reasonableness of a solution.
Grade 8
Specific: Use estimation when solving problems involving operations with whole numbers, decimals, percents, integers, and fractions, to help judge the reasonableness of a solution.

Does This Sound about Right?
Measurement

Grade 7

Specific: Solve problems that require conversion between metric units of measure (e.g., millimetres and centimetres, grams and kilograms, millilitres and litres).

Grade 8

Specific: Solve problems that require conversions involving metric units of area, volume, and capacity.

Math Magic Trick

Number Sense and Numeration

Grade 7 \& 8

Specific: solve multi-step problems arising from real-life contexts and involving whole numbers and decimals, using a variety of tools and strategies; evaluate expressions that involve whole numbers and decimals, including expressions that contain brackets, using order of operations.
Mathematical Process-Reasoning and Proving Develop and apply reasoning skills (e.g., recognition of relationships, generalization through inductive reasoning, use of counter-examples) to make mathematical conjectures, assess conjectures and justify conclusions, and plan and construct organized mathematical arguments;

Decimal Addition

Number Sense and Numeration

Grade 7

Specific: Use a variety of mental strategies to solve problems involving the addition and subtraction of fractions and decimals.

Grade 8

Overall: Solve problems involving whole numbers, decimal numbers, fractions, and integers, using a variety of computational strategies.

What is the value of each image? Patterning and Algebra

Grade 8

Specific: Determine the Pythagorean relationship through investigation.
Specific: Solve problems involving right triangles geometrically, using the Pythagorean relationship.

Number Sense and Numeration

Grade 7
Specific: Represent perfect squares and square roots, using a variety of tools.

What's Going on in this Graph?

Data Management and Probability

Grade 7 \& 8

Specific: read, interpret, and draw conclusions from primary data and from secondary data presented in charts, tables, and graphs;
make inferences and convincing arguments that are based on the analysis of charts, tables, and graphs.

All in a Jumble

 Mathematical ProcessesDevelop and apply reasoning skills to make mathematical conjectures, assess conjectures and justify conclusions, and plan and construct organized mathematical arguments.

Puzzling Prisms
 Measurement

Grade 7

Specific: Determine, through investigation using a variety of tools, the surface area of right prisms.
Specific: Solve problems that involve the surface area and volume of right prisms and that require conversion between metric measures of capacity and volume.

Math Visuals

Number Sense and Numeration

Grade 7 \& 8

Specific Expectations: solve multi-step problems arising from real-life contexts and involving whole numbers and decimals, using a variety of tools and strategies

Grade 7

Specific: Solve linear equations of the form $\mathrm{ax}=\mathrm{c}$ or $\mathrm{c}=$ ax and $\mathrm{ax}+\mathrm{b}=\mathrm{c}$ or variations such $\mathrm{as} \mathrm{b}+\mathrm{ax}=\mathrm{c}$ and $\mathrm{c}=$ $\mathrm{bx}+\mathrm{a}$ (where a, b and c are natural numbers) by modelling with concrete materials, by inspection, or by guess and check, with and without the aid of a calculator.

Grade 8

Specific: Solve and verify linear equations involving a one-variable term and having solutions that are integers, by using inspection, guess and check, and a "balance" mode.

Always? Never? Sometimes?
 Mathematical Processes

Reasoning and Proving

Develop and apply reasoning skills to make mathematical conjectures, assess conjectures and justify conclusions, and plan and construct organized mathematical arguments.

Reflecting

Demonstrate that they are reflecting on and monitoring their thinking to help clarify their understanding as they complete an investigation or solve a problem.

Would You Rather?
Number Sense and Numeration

Grade 7

Specific: solve problems that involve determining whole number percents, using a variety of tools. Specific: solve problems involving percent that arise from real-life contexts.

Square Counting

Patterning and Algebra

Grade 7

Specific: compare pattern rules that generate a pattern by adding or subtracting a constant, or multiplying or dividing by a constant, to get the next term with pattern rules that use the term number to describe the general term.

Mathematical Process- Problem Solving

develop, select, apply, and compare a variety of problem-solving strategies as they pose and solve problems and conduct investigations, to help deepen their mathematical understanding;

Number The Sides
 Geometry and Spatial Sense

Grade 7

Specific: Demonstrate an understanding that enlarging or reducing two-dimensional shapes creates similar shapes.

Grade 8

Specific: Determine, through investigation using a variety of tools, relationships among area, perimeter, corresponding side lengths, and corresponding angles of similar shapes.

Twin Puzzles

Number Sense and Numeration

Grade 7

Specific: Evaluate expressions that involve whole numbers and decimals, including expressions that contain brackets, using order of operations.

Grade 8

Specific: Evaluate expressions that involve integers, including expressions that contain brackets and exponents, using order of operations.

