	Monday	Tuesday	Wednesday	Thursday	Friday
	Measure how tall you are in cm, and in a nonstandard unit (like floor tiles, Legos, pencils, etc.)	Using your height, how tall do your think your family members are? How did you get your answers?	Estimate the height of a nearby tree. How did you come up with your estimate?	Estimate the height of the ceiling in your bedroom. How did you come up with your estimate? Verify your answer if you can.	Estimate the height of the building you live in. What's too low? Too high? How did you come up with your estimate?
	How Many?	Click on the " How Many?	w Many" links for q How many?	stions to ask How Many?	How Many?
	Did you enjoy talking math? These images and more can be found at www.mathbeforebed.com				
	Using a deck of cards play Go Fish Change it up: Make 10 Go Fish Make 15 Go Fish Options are endless	Game: Mystery Number Think of a number. Say a statement that includes your mystery number: Ask for everyone to describe how they solved it. Change it up!	Bake something together. Talk about the measurements. How much would you need if you doubled the recipe? What if you halved it?	Snap It Gather a set number of items (like 10 Legos). Take turns hiding some. The other person has to tell you how many are hiding.	Games with Number Cubes PIG: See who can get a score closest to 100
$\begin{aligned} & \frac{\sim}{U} \\ & \frac{0}{0} \\ & \text { O } \\ & \text { O2 } \end{aligned}$	You have the following digits...7, $5,2,4,6,3$. What is the largest 2digit numberyou can make? What is the smallest 2-digit number?	There were 3 apples on the table. Jan put 6 more apples on the table. How many apples were on the table in all? Show your work.	Tim has 12 fish. Seven are yellow and the rest are red. How many red fish does Tim have? Show your work.	Make it Equal $\square=\square+\square=\square+\square+\square$	I have 6 coins worth 51c. What coins do you think I have? Is there more than one answer? What are the possibilities?
	Catch a Bouncing Ball	Representation Match \qquad 0 to 5 0 to 10 0 to 20	Mathology Little Books \checkmark Read the Parent Guide \checkmark Read the online story \checkmark Do activities in parent guide	Mathology Little Books \checkmark Read the Parent Guide \checkmark Read the online story \checkmark Do activities in parent guide	Catch A Bouncing Ball Representations

How many red blocks will it take to cover the green block?

Some Questions to Ask

- How many red blocks will it take to cover the green block?
- If you had two green blocks, how many red blocks would you need?
- If you had 6 red blocks, how many green blocks could you cover?
- How do you know?

How mensy?

Some Questions to Ask

- How many cars do you see?
- How many cars of each colour are there?
- How could you sort the cars?
- What number do you see?
- If another child counted them a different way, how might they count them?
https://mathbeforebed.com/2018/05/01/car-collection/

How

many?

Some Questions to Ask

- How many cooked cookies do you see?
- How many uncooked cookies do you see?
- How many cookies are there all together?
- How many rows of cookies are there?
- How many columns cookies are there?
- What different ways could you count the cookies?
https://mathbeforebed.com/2017/07/16/cookie-counter/

Some Questions to Ask

- How many circles are there?
- How did you count them?
- What numbers do you see?
- Another child counted them a different way, how might they have counted them?

Some Questions to Ask

- How many circle faces are there?
- How did you count them?
- How could you make this problem easier to solve?
- If you filled the first ten frame how many would be left in the second ten frame?
- Can you tell me an addition sentence that goes with this problem?

Make it Equal

Using the digits 1 to 9 at most one time each, place a digit in each box to create a true statement.

$\square=\square+\square=\square+\square+\square$

Make it Equal Part 2

Use only the digits 1 to 7 , at most one time each, fill in the boxes to create a true equation.

PIG

Players:

Object:

Materials: 1 or 2 dice, 120 chart (optional)
2

Be the first player to reach 100

One Die Version: On a turn, a player can roll repeatedly until one of two things happens (1) the player rolls a 1 or (2) the player chooses to hold (stop rolling). Each number rolled is added to the player's total. If a 1 is rolled, all points for that turn are lost!

Scoring examples:

1. Suzy rolls a 4 and decides to continue. She then rolls 5 more times ($3,4,2,6,1$). Because she rolled a 1 , her turn ends and she receives no points for the numbers rolled.
2. Marcus rolls a 6 and decides to continue. He rolls 3 more times $(4,3,5)$ and decides to hold. His score for the round is $18(6+4+3+5=18)$.

Two Dice Version: Two dice are rolled. If a single 1 is rolled on either dice, the turn ends and all points are lost. If two $1 s$ are rolled on a single turn, the player scores 25 points. Doubles, for example a 2 and a 2 , are worth double points ($4 \times 2=8$).

Snap It

Students work together to make different combinations for a given number.

Task Instructions:

- Gather a set number of items from around the house,
- Consider lego, macaroni pieces, marbles, beads, toy cars
- On the signal, "snap", break your train of lego (or take a portion of the items) into two parts and hold one hand behind your back.
- Take turns showing the remaining items
- Work out how many are behind your back
- Always ask the question "How did you know?"
- We really want to get at students reasoning and flexibility with number.

Note:

Depending on the age of child, you may want to start with 5 cubes / items, then proceed to 10. Once your student has mastered five and ten, might you consider using numbers like 9 or 11. This will allow them to use their known 10 facts and help to build flexibility with numbers.

Mystery Number

Instructions:

- One player thinks of a number.
- They create a number sentence / statement that includes their mystery number:

$$
3+?=7
$$

- Ask for everyone to describe how they solved it.

Change it up:

- Number position, $4+5=$?
my number plus 3 more is 8
I had four cars and I got some more, now I have 12.
- Addition and subtraction
- Use counters

