Math K-3 Activities Menu B

Instructions: Choose from the options below. Enjoy as many or as few as you have time for.

Think about bouncing a ball across a room. How many bounces will it take? How did you arrive at your estimate? Try it.

Tuesday
Wednesday
Thursday Friday

How many bounces would it take to go around the house/building you live in? Try it. How did you produce your estimate?

How many bounces might it take to go around a room? Try it. How did you produce your estimate?

How many bounces might it take to go to the end of your driveway? Try it. How did you produce your estimate?

How many bounces might it take to go to the end of your street and back to where you live? How did you produce your estimate?

WODB (Which One Doesn't Belong)? Can you come up with reasons why each image does not belong in the set? Did you enjoy talking math? These images and more can be found at www.wodb.ca.

Games with a
Deck of Cards Total 10

Mark has 3 dogs, 5 cats, and 8 birds. How many pets does he have in all? Show your work. Extend: Ho w many legs are there?

Toss and Add

Fill in the blanks with digits 0 to 4 so that these numbers are in order from least to greatest.

Bake a Treat!

- Read through the instructions.
- Have your child sort ingredients in the order they will be used.
- What ingredient is being used in the smallest / largest amount?

Jen had some flowers. Her friend gave her 9 more flowers. Now she has 14 flowers. How many flowers did Jen have to start with? Show your work. Is there another way to solve the problem?

Snakes and Ladders

Instructions:

- Players take turns rolling the die.
- Move that many spaces. If you hit a ladder climb up to the higher number, if you land on a snake head, slide down to the tail.
- Make sure your child is carefully counting each square.

Alternatives:
Have your child add the numbers in their head before they move to the next square.

- Start at 100 and go backward to practice subtraction.
- If you can't take it outside, use this printable or make your own!

100	99	98	97		95		93	92	91
81	82			85	86	87		39	90
80			77	76				72	
				65	66			69	70
		58	57	56	55	54		52	51
41			44				\%	49	50
0									
21	22					4			
20	19	18		16	15	14	13	12	11
1	2	3	4	5	6	7	8	9	

Total Ten

Instructions:

- Lay out 20 cards in a 4×5 array
- Face cards have a value of 10
- Take turns clearing cards that add to the target number 10
- Goal: clear as many cards from the table as possible

Change it Up:

- Remove the face cards
- Make a smaller array
- Pick a different target number
- Use addition and subtraction
- Use multiplication and division
- Make it a challenge to see who can remove the last set of numbers

Toss and Add

Required Materials:

- 6 plastic cups
- Sharpie
- Something to toss (ball, bean bag, stuffie) to knock down the cups
- Something to keep score

Instructions:

- Write the numbers 1 to 6 on the plastic cups. Alternatively, use tape if you don't want to permanently number the cups.
- Set the cups up in a pyramid, as shown.
- Establish a start line.
- Have your child(ren) toss the ball to knock down the cups.
- Add up the number score of cups that are knocked down.
- Record this score on a chart.
- Take turns to see who can get the highest score.

Change it up:

- Use different numbers.
- Start with a target number of 50 or 100 and subtract scores to see who can get to zero first.

Build the Biggest

Throw Away

Players:	at least 2
Materials:	a die per person, paper
Object:	build the biggest number possible

How to Play:

- Players each draw a game board like the one below.
- Each player rolls their die and decides where to place the digits of their number.
- Once placed, a digit cannot be moved.
- The throw away box is used to discard a digit that a player doesn't want to use to build their number.
- Players continue rolling the dice and placing digits until their game board is filled.
- Players read their numbers out loud and the largest number wins.

Change it Up:

- Use more or fewer digits
- Try to build the smallest number possible
- Roll only one die, each player must use the same numbers

Popsicle Tallies

Flavor		Votes
Cherry		
Orange		

A class voted on their favourite popsicle flavours. They used tally marks to show how many votes each flavour received.

- Which flavour got the most votes? How do you know?
- Which flavour got the fewest votes? How do you know?
- How many students are in the class?
- Make a graph or a pictograph to show the data.

Extend: Can you create your own survey about something you are interested in? Ask your family. If you connect virtually with others, ask them too!

We Can Bead

Before Reading: Predict what you think the book is about.
Read / Listen to the story.

During Reading:

As you read the story, encourage your child to talk about and describe the beads and patterns found on each necklace. Invite your child to predict what bead would come next in the necklace.
After reading:
Use beads, or the mathies pattern blocks, to create your own patterns. Have your child identify the core of the pattern (the part that repeats). Have them predict what would come next. What would the tenth bead be? What about the twelfth? How do you know?
Research the importance of beads in Indigenous cultures.
What are beads used for? Do all cultures use beads in the same way? How are beads used in Regalia wear?

Are these shapes equal? How do you know?

Create and Calculate the Cost

Instructions:

- Use the pattern blocks found in www.mathies.ca learning tools.
- Choose 10 shapes to create an image.
- If a green triangle is worth 1 C how much would your design be worth?

Extend:

- If the green triangle is $1 ¢$ what is the least expensive shape you could make? The most expensive?
- If we added a red trapezoid how much would the value of your picture change?
- What if the green triangle had a value of $5 ¢$?
- What if the yellow hexagon had a value of one. How much would your image be worth?

